Jblog 是一个基于JAVA;适合JAVA初、中级水平编程人员使用、阅读并修改源代码的个人博客系统,不如来丁丁的 Jblog Git OSChina 瞧瞧?

STM32F4+DP83848以太网通信指南系列(九):自己写一个ARP协议

前言:项目需求使用STM32F407进行以太网通信,并涉及到数据链路层的工业以太网通信,使用LWIP协议栈并不能满足需求,因此需要自己摸清STM32F407调用外部PHY进行网络收发包的过程,并在此基础上尝试自己构建适用于项目的网络协议栈。我基本上是从零开始着手这个项目的,之前只有一些STC51系列和STM32F1系列单片机开发的经验,项目开发过程中学习、参考、借鉴了很多网络上的教程和博客,在此尤其感谢正点原子团队发布的相关视频教程。公司买的开发板主芯片是一颗STM32F407,搭配了一颗DP83848的PHY,因此本系列教程将使用DP83848进行适配,同时原子哥的学习板和教程中是使用LAN8720这颗PHY进行适配的,本系列指南也会花一些篇幅介绍各种PHY与STM32芯片进行适配的方法。

为了您更好地阅读本系列,请点击原创连接进行浏览:

本章为系列指南的第九章,终结篇,本章主要来分析一下完整的ARP协议,并在STM32F4中实现一个精简的ARP协议响应流程。

ARP协议的本质是使局域网内的其他主机能够知道我在哪儿,比如在局域网上有人冲着所有人喊了一句「IP为XXXX的家伙,你在哪儿」,我一听,XXXX不是我的IP吗,我得回答他啊,于是我冲着所有人(也可以是单独的这个人)喊一句「我在这儿呢,我的MAC是YYYY」,这样局域网内所有用户,包括交换机就知道IP为XXXX的家伙MAC地址是YYYY,并且交换机知道了我连在它的第N个端口上,以后有人要通过交换机向IP为XXXX的我发信息,交换机就把数据包发到N port上去了。没有上面这套流程,局域网上就没人知道你是谁,你的IP多少,你的MAC多少,你连在交换机大佬的第几个端口上,自然你也收不到任何非广播包数据了。

ARP请求

如果我要向一个之前没有任何联系的主机主动发一个数据包,一般情况下都会触发一个ARP询问,比如我们上一章《STM32F4+DP83848以太网通信指南第八章:收包流程》中,最后的实验,我打开CMD命令行,输入了一个指令ping 192.168.1.201,这时候PC的底层设备(一般是网卡)首先判断一下自己的缓存中有没有192.168.1.201这个IP的缓存信息,如果没有通信记录或者时间过长失效了,就得在网络上广播一下,找找看当前有没有谁在用192.168.1.201这个IP地址,包内容如下:

ff ff ff ff ff ff 00 0e c6 d4 1d d4 08 06 00 01
08 00 06 04 00 01 00 0e c6 d4 1d d4 c0 a8 01 c8
00 00 00 00 00 00 c0 a8 01 C9

WireShark分析以上报文的解析如下图所示:

ARP响应

目标主机的MAC地址为FF FF FF FF FF FF时,交换机会将此包广播到所有端口,这时候所有节点的网卡上都能收到这个广播包,如果某一节点的IP地址为192.168.1.201则需要对此包进行响应,判断依据为上述包的以下特征:

  • 第一行倒数第4,第3字节:0806,代表的是ARP协议
  • 第二行第6字节:01,代表的是ARP请求
  • 第三行最后4字节:c0 a8 01 C9,代表的是192.168.1.1,跟自己寄存器中的值匹配

响应数据包为以下内容:

00 0e c6 d4 1d d4 00 11 0e 0b 03 8a 08 06 00 01
08 00 06 04 00 02 00 11 0e 0b 03 8a c0 a8 01 c9
00 0e c6 d4 1d d4 c0 a8 01 c8 00 00 00 00 00 00
00 00 00 00 00 00 00 00 20 20 20 20

上述中,以下数据是动态变化的:

  • 第一行前6个字节:00 0e c6 d4 1d d4,根据请求包中的第7-12六个字节决定,表示目标MAC地址
  • 第一行第7-12六个字节:00 11 0e 0b 03 8a,自由设置的自己的MAC地址
  • 第二行第7-12六个字节:00 11 0e 0b 03 8a,自由设置的自己的MAC地址
  • 第二行倒数4个字节:c0 a8 01 c9,自己的IP地址,也就是请求包中所呼唤的IP地址,192.168.1.201
  • 第三行前6个字节:00 0e c6 d4 1d d4,根据请求包中的第7-12六个字节决定,表示目标MAC地址
  • 第三行第7-10四个字节:c0 a8 01 c8,根据请求包第二行倒数四个字节决定,表示目标IP地址

这些信息都可以用WireShark分析出来,WireShark对每一个字节的含义都有明确的解释。

编码实现

有了特征匹配及填充规则,配合我们之前的STM32发包和收包DEMO,我们就可以编程实现ARP数据包的响应了。

#define LEN_ARP 42

/* 以下为业务逻辑需要用到的全局变量 */
u8 IPAddr[4];

vu8  SystemStatus; /* 系统状态,bit0:是否需要发送被动响应数据包,bit1:是否打开了PNIO开关,bit2:是否需要发送PNControl request */
vu16 sendLen;      /* 发送包长度 */
u8 sendBuffer[1024];   /* 发送包BUFFER */
u8 arp_answer[LEN_ARP]={
    0,0,0,0,0,0, /* ArpAskerMac */ 0,0,0,0,0,0, /* myMac */ 0x08, 0x06, 0x00, 0x01,
    0x08, 0x00, 0x06, 0x04, 0x00, 0x02, 0,0,0,0,0,0, /* myMac */ 0,0,0,0, /* IP address */
    0,0,0,0,0,0, /* ArpAskerMac */ 0,0,0,0/* ArpAskerIP */
};

int main() {
    SystemStatus = SS_NOTHING;
    sendLen = 0;    

    /* 默认调用SystemInit,系统时钟168MHz */
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);        //4位抢占,0位响应

    DelayInit(168);        //初始化168MHz

    NVIC_SetPriority (SysTick_IRQn, 0);        //系统滴答定时器优先级最高  

    DP83848Init(MyMacAddr);        //初始化DP83848

    while(1) {
        if (0x01 == (SystemStatus & 0x01)){
            /* 如果需要发送被动网卡响应 */
            DP83848Send(sendBuffer, sendLen);            
            sendLen = 0;
            SystemStatus = SystemStatus & 0xFE; /* bit0置为0 */
        }
    }
}

void Pkt_Handle(void) {
    FrameTypeDef frame;
    __IO ETH_DMADESCTypeDef *DMARxNextDesc;

    /* get received frame */
    frame = ETH_Get_Received_Frame();
    /* Obtain the size of the packet and put it into the "len" variable. */
    receiveLen = frame.length;
    receiveBuffer = (u8 *)frame.buffer;

    if (Match(receiveBuffer, ArpProtocol, 12, 2) && Match(receiveBuffer, IPAddr, 38, 4)){
        /* ARP */
        //printf("ARP test received\n");
        memcpy(sendBuffer, arp_answer, LEN_ARP);

        for (int i = 0; i < 6; i++) {
            /* ArpAskerMac */
            sendBuffer[i] = receiveBuffer[6 + i];    
            sendBuffer[32 + i] = receiveBuffer[6 + i];
        }
        for (int i = 0; i < 4; i++) {
            /* ArpAskerIP */
            sendBuffer[38 + i] = receiveBuffer[28 + i];    
        }

        sendLen = LEN_ARP;
        SystemStatus = (SystemStatus | 0x01); /* 打开网卡被动数据发送开关 */
    }

    /* Check if frame with multiple DMA buffer segments */
    if (DMA_RX_FRAME_infos->Seg_Count > 1) {
        DMARxNextDesc = DMA_RX_FRAME_infos->FS_Rx_Desc;
    } else {
        DMARxNextDesc = frame.descriptor;
    }

    /* Set Own bit in Rx descriptors: gives the buffers back to DMA */
    for (i = 0; i < DMA_RX_FRAME_infos->Seg_Count; i++) {
        DMARxNextDesc->Status = ETH_DMARxDesc_OWN;
        DMARxNextDesc = (ETH_DMADESCTypeDef *)(DMARxNextDesc->Buffer2NextDescAddr);
    }

    /* Clear Segment_Count */
    DMA_RX_FRAME_infos->Seg_Count = 0;

    /* When Rx Buffer unavailable flag is set: clear it and resume reception */
    if ((ETH->DMASR & ETH_DMASR_RBUS) != (u32)RESET) {
        /* Clear RBUS ETHERNET DMA flag */
        ETH->DMASR = ETH_DMASR_RBUS;
        /* Resume DMA reception */
        ETH->DMARPDR = 0;
    }
}

编码的总体思想就是中断中快进快出,用变量来标记状态,主循环中不断判断状态并复位状态。

使用这种方式,可以继续扩展ICMP协议,实现PING指令,以及更多按需裁剪的TCP/IP协议,当然扩展的协议越多,这种纯粹的if判断也会越多,以后会细分各个层,在层次中继续if判断,当到了顶层应用层之后,就只管TCP/UDP协议了,内容一般都是应用协议自己规划的比如HTTP,FTP这些协议,只需要把上层协议的数据结构填充到下层协议的内容区域就行了。当遇到数据包比较庞大的时候,还需要分包传输,暂时我们没有用到,LWIP中有相应的实现,有需求的话可以去研究。此外,我们实验中的代码都是基于数组进行数据装箱拆箱操作的,而网络包的协议是按层次来的,使用数组不断的进行数据的填充是非常消耗性能的,因此在遇到数据量比较大,需要实现的协议比较多时,仍然建议按照LWIP的思路使用收尾相接的链式结构进行拆装箱。

系列总结

到此我们这个系列就算告一段落了,后面的工业以太网的协议的分析和实现我不方便做公开的教程,也是自己一步一步摸索过来的,目前自己在设计PCB板,后期这个工程需要制板贴片并做成最终的工业产品。

我们来回顾总结一下这个系列教程,首先我们对STM32F407的时钟、中断等相关知识做了一个梳理,接着我们认识了STM32中的MAC,以及跟MAC搭配的PHY,同时还对DMA技术做了一个粗略的了解。试着初始化相关的GPIO,使能了MAC,DMA,PHY,这样一个DP83848Init()函数就搞定了;再后来我们又完成DP83848Send()函数,能够发包了,接着配置了以太网中断,能够在Pkt_Handle()函数中进行以太网收包了,以上函数的编写,我们都是参考的ethernetif.c文件,它的几个底层函数low_level_initlow_level_outputlow_level_input给我们提供了重要的线索。最后对TCP/IP协议栈中的ARP协议进行了分析,并运用之前的全部知识,进行了ARP响应的编码实现,并对以后其他协议的扩展实现提出了思路和优化建议。

好了,期待今后有更多的系列教程跟大家分享。再见!

STM32F4+DP83848以太网通信指南系列(八):收包流程

前言:项目需求使用STM32F407进行以太网通信,并涉及到数据链路层的工业以太网通信,使用LWIP协议栈并不能满足需求,因此需要自己摸清STM32F407调用外部PHY进行网络收发包的过程,并在此基础上尝试自己构建适用于项目的网络协议栈。我基本上是从零开始着手这个项目的,之前只有一些STC51系列和STM32F1系列单片机开发的经验,项目开发过程中学习、参考、借鉴了很多网络上的教程和博客,在此尤其感谢正点原子团队发布的相关视频教程。公司买的开发板主芯片是一颗STM32F407,搭配了一颗DP83848的PHY,因此本系列教程将使用DP83848进行适配,同时原子哥的学习板和教程中是使用LAN8720这颗PHY进行适配的,本系列指南也会花一些篇幅介绍各种PHY与STM32芯片进行适配的方法。

为了您更好地阅读本系列,请点击原创连接进行浏览:

本章为系列指南的第八章,讲述如何使用STM32F407芯片配合DP83848进行以太网数据的收包流程,将监听到的网络包数据通过UART传给PC,同时辅以WireShark监听对比验证。

关于UART,也就是串口通信的使用,这里不做赘述,需要补充知识的朋友可以先浏览一下我在STM32F1系列的UART教程,F4系列也是大同小异,资源和引脚有所调整而已。我们这里预设两个函数分别为UART6Init()UART6Send(),实现的功能是串口6的初始化和发送。

以太网中断

《STM32F4+DP83848以太网通信指南第五章:MAC+DMA配置》中,我们已经添加了以太网中断,其思路就是想让每次以太网上有收到包都能触发中断,我们可以在中断中将DMA中的数据包取出来进行分析,然后复位,让芯片下一次继续响应中断。

配置中断的代码非常简单,跟其他任何中断都一样,这里再复习一次:

void ETH_NVIC_Config(void) {
    NVIC_InitTypeDef   NVIC_InitStructure;

    /* Enable the Ethernet global Interrupt */
    NVIC_InitStructure.NVIC_IRQChannel = ETH_IRQn;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);
}

整个工程的优先级组别选用的NVIC_PriorityGroup_4,有4位抢占位,0位响应位,也就是可以分配16个可以互相嵌套的中断等级。这里以太网中断的主优先级为1,相当于第二高,前面预留了个优先级为0的,用来分配给系统计时器,毕竟不能因为以太网数据的响应影响系统走时。

UART6Init()串口初始化函数中,给串口的中断等级是2,低于以太网中断,因为串口的波特率是9600,要远远低于以太网速率,如果给串口的优先级过高,会影响以太网的使用。

配置了中断后,我们还需要知道中断的入口函数,这个函数名是固定死的,不能乱写,我们去找找。

《STM32F4+DP83848以太网通信指南第五章:MAC+DMA配置》我提到,中断配置代码中的ETH_IRQn变量,我们可以在stm32f4xx.h文件中找到定义,是在一个枚举结构中。那与之对应的中断入口名称该怎么找呢,原来所有的中断入口的定义,都用汇编入口的方式定义在启动文件中,这份启动文件我们之前一直没有关注过,现在打开看一看,在startup_stm32f40_41xxx.s中148行有其定义,截图如下。

中断中的数据处理

配置好了以太网中断,也知道了中断入口函数的名称,下面我们就来编写以太网中断函数。打开工程中的stm32f4xx_it.c文件,一般每一个使用了中断的STM32工程都会有这么一个文件,用来集中管理中断入口。追加以下代码:

/**
  * @brief  This function handles ethernet DMA interrupt request.
  * @param  None
  * @retval None
  */
void ETH_IRQHandler(void)
{
    /* Handles all the received frames */
    /* check if any packet received */
      while(ETH_CheckFrameReceived()){ 
        /* process received ethernet packet */
        Pkt_Handle();
    }
    /* Clear the Eth DMA Rx IT pending bits */
    ETH_DMAClearITPendingBit(ETH_DMA_IT_R);
    ETH_DMAClearITPendingBit(ETH_DMA_IT_NIS);
}

上面的代码配上英文的注释也很好理解,以太网中断中首先检查是否接受到以太网的数据包,如果是,就调用Pkt_Handle()函数进行下一层的分析和处理,最后两行Clear复位中断标记,让下一次中断能够产生。那么问题就集中到Pkt_Handle()函数上来了。

Pkt_Handle()函数是我自己命名的,这个函数的原型取自LWIP中的LWIP_Pkt_Handle(),我们先来观察一下LWIP中的包分析函数怎么写的:

STM32F4x7_ETH_LwIP_V1.1.1/Project/Standalone/udp_echo_client/src/netconf.c中,有如下代码:

/**
* @brief  Called when a frame is received
* @param  None
* @retval None
*/
void LwIP_Pkt_Handle(void)
{
  /* Read a received packet from the Ethernet buffers and send it to the lwIP for handling */
  ethernetif_input(&gnetif);
}

可以看到LWIP继续调用了下层的ethernetif_input(),继续追踪到我们之前提到的最底层文件ethernetif.c,是不是有种似曾相识的感觉,这个文件前几章我们不止一次遇到过,分别为我们提供了low_level_initlow_level_output多个重要函数,我们现在又一次遇到它了,看上去它这次要为我们的以太网监听提供low_level_input了。

果不其然,在ethernetif_input函数中,我们看到了这个预料中的函数调用,截图如下:

我这里把路径为STM32F4x7_ETH_LwIP_V1.1.1/Utilities/Third_Party/lwip-1.4.1/port/STM32F4x7/Standalone/ethernetif.c的原版low_level_input()的所有代码都贴出来,感兴趣的朋友可以仔细研读:

/**
 * Should allocate a pbuf and transfer the bytes of the incoming
 * packet from the interface into the pbuf.
 *
 * @param netif the lwip network interface structure for this ethernetif
 * @return a pbuf filled with the received packet (including MAC header)
 *         NULL on memory error
 */
static struct pbuf * low_level_input(struct netif *netif)
{
  struct pbuf *p, *q;
  u16_t len;
  int l =0;
  FrameTypeDef frame;
  u8 *buffer;
  uint32_t i=0;
  __IO ETH_DMADESCTypeDef *DMARxNextDesc;


  p = NULL;

  /* get received frame */
  frame = ETH_Get_Received_Frame();

  /* Obtain the size of the packet and put it into the "len" variable. */
  len = frame.length;
  buffer = (u8 *)frame.buffer;

  /* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
  p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);

  /* copy received frame to pbuf chain */
  if (p != NULL)
  {
    for (q = p; q != NULL; q = q->next)
    {
      memcpy((u8_t*)q->payload, (u8_t*)&buffer[l], q->len);
      l = l + q->len;
    }    
  }

  /* Release descriptors to DMA */
  /* Check if frame with multiple DMA buffer segments */
  if (DMA_RX_FRAME_infos->Seg_Count > 1)
  {
    DMARxNextDesc = DMA_RX_FRAME_infos->FS_Rx_Desc;
  }
  else
  {
    DMARxNextDesc = frame.descriptor;
  }

  /* Set Own bit in Rx descriptors: gives the buffers back to DMA */
  for (i=0; i<DMA_RX_FRAME_infos->Seg_Count; i++)
  {  
    DMARxNextDesc->Status = ETH_DMARxDesc_OWN;
    DMARxNextDesc = (ETH_DMADESCTypeDef *)(DMARxNextDesc->Buffer2NextDescAddr);
  }

  /* Clear Segment_Count */
  DMA_RX_FRAME_infos->Seg_Count =0;

  /* When Rx Buffer unavailable flag is set: clear it and resume reception */
  if ((ETH->DMASR & ETH_DMASR_RBUS) != (u32)RESET)  
  {
    /* Clear RBUS ETHERNET DMA flag */
    ETH->DMASR = ETH_DMASR_RBUS;
    /* Resume DMA reception */
    ETH->DMARPDR = 0;
  }
  return p;
}

同样的,配合注释应该也容易理解。22行的frame变量取到了以太网数据包,ETH_Get_Received_Frame函数,不用LWIP也是有的,在之前我们提到过的stm32f4x7_eth.c文件中,lenbuffer两个变量一个是包长度,一个是包内容头指针。

下面/* copy received frame to pbuf chain */那一段是用链表遍历的方式,将以太网包数据放入LWIP处理数据的pbuf链表中,方便LWIP上层逻辑获取数据,这里我们不使用LWIP,这一段可忽略。

接下来所有的操作都是针对DMA进行的,将DMA复位,因此我们需要保留,否则会一直产生重复的中断。

通过以上的分析,我们可以轻松写出自己的Pkg_Handle()函数了:

void Pkt_Handle(void) {
    FrameTypeDef frame;

    /* get received frame */
    frame = ETH_Get_Received_Frame();
    /* Obtain the size of the packet and put it into the "len" variable. */
    receiveLen = frame.length;
    receiveBuffer = (u8 *)frame.buffer;

    printf("0011%d0022\n", receiveLen);    //将每一个的包长度发往串口

    if(receiveBuffer[41] == 201){        //如果第42字节是十进制201,则将整个包内容发往串口
        for (i = 0; i < receiveLen; i++) {
            printf("%c", receiveBuffer[i]);
        }
    }

    /* Check if frame with multiple DMA buffer segments */
    if (DMA_RX_FRAME_infos->Seg_Count > 1) {
        DMARxNextDesc = DMA_RX_FRAME_infos->FS_Rx_Desc;
    } else {
        DMARxNextDesc = frame.descriptor;
    }

    /* Set Own bit in Rx descriptors: gives the buffers back to DMA */
    for (i = 0; i < DMA_RX_FRAME_infos->Seg_Count; i++) {
        DMARxNextDesc->Status = ETH_DMARxDesc_OWN;
        DMARxNextDesc = (ETH_DMADESCTypeDef *)(DMARxNextDesc->Buffer2NextDescAddr);
    }

    /* Clear Segment_Count */
    DMA_RX_FRAME_infos->Seg_Count = 0;

    /* When Rx Buffer unavailable flag is set: clear it and resume reception */
    if ((ETH->DMASR & ETH_DMASR_RBUS) != (u32)RESET) {
        /* Clear RBUS ETHERNET DMA flag */
        ETH->DMASR = ETH_DMASR_RBUS;
        /* Resume DMA reception */
        ETH->DMARPDR = 0;
    }
}

验证和总结

上述函数,配合ETH_IRQHandler中断中的调用,完成了以太网的收包,并且将接受的包的长度使用0011%d0022通过printf函数通过UART发往了PC端,因为如果将整个包内容发往PC的话,串口数据会非常多。同时如果为了验证buffer中的内容能正确获取,我们写了一个if判断,判断如果数据包中的第42个字节为201,则将包内容转发到串口中去。

我们用JLink烧录进STM32F4,将PC的有线网卡与STM32直接,打开WireShark和串口通信助手进行观察和验证,截图如下。

红色框框部分是关注重点,我们在CMD命令窗口ping 192.168.1.201,可以触发一个ARP包,这个包中的第42个字节就是201,因此可以触发STM32中的if判断,将包内容通过串口转发给PC,而其他普通包,STM32则使用0011%d0022的格式将包长度发给了PC,整个实验顺利完成。

总结一下,本章我们依旧分析到了ethernetif.c文件,这次是观察的它的low_level_input()函数,借助这个函数,我们编写了我们自己的处理包的逻辑函数Pkg_Handle(),并通过以太网中断入口函数ETH_IRQHandler调用它,最后我们成功的使用WireShark配合串口进行了收包的验证。

我们可以发现这个系列教程的后半段几乎都在不停地围绕LWIP库中的ethernetif.c文件进行分析,到目前为止,它的几个重要底层函数low_level_initlow_level_outputlow_level_input已经分别为我们的以太网初始化、以太网发包、以太网收包等代码提供了重要的核心逻辑。

下一章,是我们这个系列的最后一章,我们将在STM32F4上,利用之前实验过的各个功能,自己构建一个能响应ARP协议的程序。有了ARP协议的处理过程,我们就能在此基础上扩展更多其他的协议,即使遇到工业以太网跑在链路层的各个协议,我们也能捡其重点,按照自己的意愿,随心所欲的搭建了。

STM32F4+DP83848以太网通信指南系列(七):发包流程

前言:项目需求使用STM32F407进行以太网通信,并涉及到数据链路层的工业以太网通信,使用LWIP协议栈并不能满足需求,因此需要自己摸清STM32F407调用外部PHY进行网络收发包的过程,并在此基础上尝试自己构建适用于项目的网络协议栈。我基本上是从零开始着手这个项目的,之前只有一些STC51系列和STM32F1系列单片机开发的经验,项目开发过程中学习、参考、借鉴了很多网络上的教程和博客,在此尤其感谢正点原子团队发布的相关视频教程。公司买的开发板主芯片是一颗STM32F407,搭配了一颗DP83848的PHY,因此本系列教程将使用DP83848进行适配,同时原子哥的学习板和教程中是使用LAN8720这颗PHY进行适配的,本系列指南也会花一些篇幅介绍各种PHY与STM32芯片进行适配的方法。

为了您更好地阅读本系列,请点击原创连接进行浏览:

本章为系列指南的第七章,讲述如何在之前的基础上,编写程序在STM32上发送一个网络包,并使用WireShark进行验证。

先回顾一下之前的章节我们做好的准备工作,在《STM32F4+DP83848以太网通信指南第五章:MAC+DMA配置》结束时我们封装了一个DP83848的初始化函数,该函数完成了PHY的配置,MAC层的配置,DMA的配置,并且启用了以太网中断,函数命名为DP83848Init(),那么今天,我们要做的主要任务就是编写一个类似的DP83848Send(u8* data, u16 length)函数。

可以在本章的一开始跟大家剧透一个好消息,有了《STM32F4+DP83848以太网通信指南第四章:PHY配置》《STM32F4+DP83848以太网通信指南第五章:MAC+DMA配置》 的基础,我们本章最终实现的DP83848Send(u8* data, u16 length)函数,只有两行代码,非常非常简单。这两行代码我暂时先不贴出来,我们来顺着原来的思路,根据相关文档和官方示例代码,顺藤摸瓜,一步一步深入了解以太网发包的流程,最终理解体系结构后,也就水到渠成能够写出来了。

《STM32F4+DP83848以太网通信指南第五章:MAC+DMA配置》 最后一部分提到在LWIP官方样例中,路径为STM32F4x7_ETH_LwIP_V1.1.1\Utilities\Third_Party\lwip-1.4.1\port\STM32F4x7\Standalone\ethernetif.c的文件中,第76行有个low_level_init()函数,该函数调用ETH库函数对MAC底层及DMA进行了初始化。同样的,这份文件的138行,有个名为low_level_output(struct netif *netif, struct pbuf *p)的函数,疑似是向外输出网络包的函数,下面就对这部分代码进行分析,并试着用其中的核心逻辑进行测试。

因为ethernetif.c这份代码本身隶属于LWIP,而我们是不使用LWIP的,所以这份代码只能尽量去看懂和借鉴,想要原封不动地使用是不可以的。

我们先完整地贴出这个函数:

/**
 * This function should do the actual transmission of the packet. The packet is
 * contained in the pbuf that is passed to the function. This pbuf
 * might be chained.
 *
 * @param netif the lwip network interface structure for this ethernetif
 * @param p the MAC packet to send (e.g. IP packet including MAC addresses and type)
 * @return ERR_OK if the packet could be sent
 *         an err_t value if the packet couldn't be sent
 *
 * @note Returning ERR_MEM here if a DMA queue of your MAC is full can lead to
 *       strange results. You might consider waiting for space in the DMA queue
 *       to become availale since the stack doesn't retry to send a packet
 *       dropped because of memory failure (except for the TCP timers).
 */

static err_t low_level_output(struct netif *netif, struct pbuf *p) {
    err_t errval;
    struct pbuf *q;
    u8 *buffer =  (u8 *)(DMATxDescToSet->Buffer1Addr);
    __IO ETH_DMADESCTypeDef *DmaTxDesc;
    uint16_t framelength = 0;
    uint32_t bufferoffset = 0;
    uint32_t byteslefttocopy = 0;
    uint32_t payloadoffset = 0;

    DmaTxDesc = DMATxDescToSet;
    bufferoffset = 0;

    /* copy frame from pbufs to driver buffers */
    for(q = p; q != NULL; q = q->next) {
        /* Is this buffer available? If not, goto error */
        if((DmaTxDesc->Status & ETH_DMATxDesc_OWN) != (u32)RESET) {
            errval = ERR_BUF;
            goto error;
        }

        /* Get bytes in current lwIP buffer */
        byteslefttocopy = q->len;
        payloadoffset = 0;

        /* Check if the length of data to copy is bigger than Tx buffer size*/
        while( (byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE ) {
            /* Copy data to Tx buffer*/
            memcpy( (u8_t *)((u8_t *)buffer + bufferoffset), (u8_t *)((u8_t *)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset) );

            /* Point to next descriptor */
            DmaTxDesc = (ETH_DMADESCTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);

            /* Check if the buffer is available */
            if((DmaTxDesc->Status & ETH_DMATxDesc_OWN) != (u32)RESET) {
                errval = ERR_USE;
                goto error;
            }

            buffer = (u8 *)(DmaTxDesc->Buffer1Addr);

            byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
            payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
            framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
            bufferoffset = 0;
        }

        /* Copy the remaining bytes */
        memcpy( (u8_t *)((u8_t *)buffer + bufferoffset), (u8_t *)((u8_t *)q->payload + payloadoffset), byteslefttocopy );
        bufferoffset = bufferoffset + byteslefttocopy;
        framelength = framelength + byteslefttocopy;
    }

    /* Note: padding and CRC for transmitted frame
       are automatically inserted by DMA */

    /* Prepare transmit descriptors to give to DMA*/
    ETH_Prepare_Transmit_Descriptors(framelength);

    errval = ERR_OK;

error:

    /* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
    if ((ETH->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET) {
        /* Clear TUS ETHERNET DMA flag */
        ETH->DMASR = ETH_DMASR_TUS;

        /* Resume DMA transmission*/
        ETH->DMATPDR = 0;
    }
    return errval;
}

这个函数的官方注释描述的就是用来向外发送以太网包的,函数中说要发的包在第二个参数,类型为pbuf结构体指针的参数p中,并且说了p可能是个链表,我们看到函数的两个入参都是结构体参数,这两个结构体的定义我们不需要管,是LWIP自己封装的一个结构体。我们去寻迹参数p的用法,在代码片段的30行,使用q变量和for循环遍历p,因此我们能够确定p就是个头尾相接的pbuf链表。继续观察遍历体中的操作逻辑,我们看到整个for循环的主要目的就是在尝试将q->payload中的byte,利用函数memcopy()buffer变量中堆,并且做了一些长度的校验,我们继而去观察一下buffer变量的定义,第19行的u8 *buffer = (u8 *)(DMATxDescToSet->Buffer1Addr);是一个比较重要的线索,由此我们可以抽丝剥茧出整体的逻辑,应该就是将首尾相接的p遍历出来,取其中每个元素的payload区域,向DMATxDescToSet->Buffer1Addr中压。最后,第73行的ETH_Prepare_Transmit_Descriptors(framelength);调用了ETH库中的函数,实现了最终的结局,将网络包发出去,入参的framelength应该就是需要发出去的包长度,包内容应该就是通过DMA技术,将内存中的DMATxDescToSet->Buffer1Addr发出去了。

有了以上针对low_level_output()函数的分析,我们来做实验印证一下,因为我们从零开始构建的项目没有LWIP,也没有ethernetif.c,更没有low_level_output()函数,因此,函数内部的逻辑都需要我们自己手动实现,慢着,不要一看到「手动实现」就头疼,你以为手动实现就很复杂吗?不,LWIP把事情搞复杂了,又是pbuf又是链表的,还有长度判断导致的Buffer2NextDescAddr切换(详见第43-62行一整段,不过不重要),如果我们手动写这段逻辑,放弃一些异常处理,再放弃那些跟LWIP强相关的结构体,我们整个发包函数只要两行就行:

void DP83848Send(u8* data, u16 length){
    memcpy((u8 *)DMATxDescToSet->Buffer1Addr, data, length);

    /* Prepare transmit descriptors to give to DMA*/
    ETH_Prepare_Transmit_Descriptors(length);
}

这里附带说明一下,并不是LWIP原版代码又臭又长,LWIP要做一个TCP/IP全栈协议,还要考虑包长度溢出的众多问题,我们精简版的协议很多不需要考虑,因此可以放弃很多繁琐的操作。

有了上述DP83848Send()函数,下面来做个小程序试验一下:

int main() {
    u8 MyMacAddr[6] = {0x08, 0x00, 0x06, 0x00, 0x00, 0x09};
    /* 下面是一段60byte大小的ARP报文,手动构建的 */
    u8 mydata[60] = {    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
                     0x00, 0x01, 0x08, 0x06, 0x00, 0x01, 0x08, 0x00, 0x06, 0x04,
                     0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xc0, 0xa8,
                     0x02, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0, 0xa8,
                     0x02, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
                     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
    u32 clock;

    /* 默认调用SystemInit,系统时钟168MHz */
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);        //4位抢占,0位响应

    DP83848Init(MyMacAddr);

    while(1){
        DP83848Send(mydata, 60);

        clock = 42000000;    //1s延时,while中每个步进需要4个周期
        while(clock--);
    }

}

使用Keil编译,用JLink下载到STM32F407中,给开发板接上网线,用WireShark就可以在网口中观察到STM32每隔1秒钟向外发送ARP报文了,虽然这段报文几乎没有任何意义。

我使用WireShark截图如下:

总结一下,这一章我们完成了一个DP83848Send()发包函数,这个函数可以接受一个字节buffer,一个字节buffer的长度,将这个buffer通过以太网发送出去,buffer内部的内容全部需要我们手工构建。DP83848Send()函数的设计思路来自于分析LWIP官网示例,主要是ethernetif.c中的代码。下一章我们同样根据这份代码,分析收包逻辑,实现STM32对以太网上数据的监听。

丁丁生于 1987.07.01 ,30岁,英文ID:newflydd

  • 现居住地 江苏 ● 泰州 ● 姜堰
  • 创建了 Jblog 开源博客系统
  • 坚持十余年的 独立博客 作者
  • 大学本科毕业后就职于 中国电信江苏泰州分公司,前两年从事Oracle数据库DBA工作,两年后公司精简技术人员,被安排到农村担任支局长(其本质是搞销售),于2016年因志向不合从国企辞职,在小城镇找了一份程序员的工作。
  • Git OSChina 上积极参与开源社区